Evolutionary Approach to Multiobjective Optimization of Portfolios That Reflect the Behaviour of Investment Funds
نویسندگان
چکیده
This paper addresses a problem of finding portfolios that perform better than investment funds while showing similar behaviour. The quality of investment portfolio can be measured using various criteria such as the return and some kind of risk measurement. Investors seek to maximize return while minimizing risk. In order to achieve this goal various instruments are considered. One of the possibilities is to entrust the assets to an investment fund. Investment funds build their own portfolios of stocks, bonds, commodities, currencies, etc. In this paper we consider the problem of finding a portfolio which outperforms a given investment fund with respect to both the return and the risk and which also behave in a similar way to the given fund. The rationale behind such an approach is that investment strategies of mutual funds are prepared by experts and are therefore expected to be reasonably good in terms of both the return and the risk. To achieve the presented goal we use a multiobjective evolutionary algorithm with a dedicated ”division mutation” operator and a local search procedure. Presented method seems capable of building portfolios with desired qualities.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملSoftware project portfolio optimization with advanced multiobjective evolutionary algorithms
Large software companies have to plan their project portfolio to maximize potential portfolio return and strategic alignment, while balancing various preferences, and considering limited resources. Project portfolio managers need methods and tools to find a good solution for complex project portfolios and multiobjective target criteria efficiently. However, software project portfolios are chall...
متن کاملMonitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach
The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...
متن کاملPortfolio Design and Optimization Using Neural Network Based Multiagent System of Investing Agents
Efficiency of the simulation methods in the social domain remains jeopardized by the multi scale complexity and vague representation of it in the mostly symbolic models applied. There is a clear need for connectionist approach in designing robust real-life applications. This paper reports about a new approach meant for designing intelligent investing agents capable to simulate well known invest...
متن کاملStock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach)
Portfolio selection process is a subject focused by many researchers. Various criteria involved in this process have undergone alterations over time, necessitating the use of appropriate investment decision support tools. An optimization approach used in different sciences is using meta-heuristic algorithms. In the present study, using Water Cycle Algorithm (WCA), a model was introduced for sel...
متن کامل